Hyper-fiequency pulsed measurements have been performed at
3GHz, The stimulus duration was 300ns and ihe profile duration,
which corresponds to the time for which the scattering parameters
mensurements are performed during the stimulus durafion, was
250ms. The maximum stable gain MSG was determined under dif-
ferent puised conditions at Vs = 10V (Fig. 4). At room iempera-
ture in class B for the quiescent bias point, the MSG was ~44B, If
the device was polarised in class A, the MSG obtained was 1dB
better hecause the device is hotter under these conditions and the
surface trap states were lower [6), The MSG obtained at a chuck
temperature of 150°C in class B was 2.5dB better than the first
MSG for the same reason. Se, by heating the device, the MSG can
be improved.

Conchusion: Pulsed measurements have demonstrated the presence
of electrical traps. The electrons can be untrapped by light and/or
temperature and/or the quiescent bias point. Hyper-frequency
pulsed measurements at 3GHz seem to prove that when the device
is heated, the MSG improves. That is the reason why the GaN
material is a good candidate for high power and high temperature
applications.
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Stability regions estimation for mismatched
uncertain variable structure systems with
bounded controliers

Kuo-Kai Shyv, Yao-Wen Tsai and Chiu-Keng Lai

Thé problem of estimating the stability regions of mismatched
uncertain  variable - structure systems  (VSS) with  bounded
controllers is considered. Based on Lyapunov stability theory, the
estimations of stability regions such as the practical stability
region (PSR), asymptotical stability region (ASR), and
exponential stability region (ESR) are discussed.

Introduction: Tn many practical variable structure systems (VSS),
the boundedness of the comtrol input showld be considered
because of physical constraints; the bounded control mput cannot
assure the global stability of the system. Hence some approaches
arc proposed to estimate the stability region of mismatched uncer-
tain VS8 subject 1o bounded controllers. In [1, 2] techniques for
estimating the ASR and PSR of mismatched uncertain VSS with a
bounded controller were proposed.

In this Letter, consider the following mismatched uncertain sys-
tems:

&=Ar+Bu+ F(l,z) (1)

where x € R7 is the state vector, w € R is the control input, and
the continuous function K¢x) is the uncertainty which contains
both the matched part and mismatched part. It is assumed that F
can be decomposed as Fl¢,x) = f{t,x} + Bh(t,x), where /1 R* x R
— R is the mismatched part and 4 : R x R" — R is the matched
part. We denote the switching surface by ¢ = 0, where the switch-
ing function o = Sx is an m-state vector. The following assump-
tions are needed:

Al: There exist known non-negative constants &, and k, such that
U0l < der || ¥l] + ke

A2: There exist known non-negative constants k; and k,, such that
(el < dallvll + K.

A3: The control « has an upper bound lu] < & such that p = & —
£, Is positive,

Ad; The pair (4,8) is completely controllable; SB is invertible, The
notation [|-|| in assumptions A1-A3 denotes the Euclidean norm of

(O

In this Letter we address the problems of estimating the PSR,
ASR, and ESR for the mismatched uncertain VSS (ean. 1), An
example is given to llustrate that the new result gives a more
improved estimation of stability regions than do existing methods,

Estimation of stability regions: First, the tesults [3] are used to
determine the switching surface. Consider the nominal system x =
Ax + Bu, and let J = diag{\y, Ay, ..., A} Where the negative and
real eigenvalues &, j = 1, 2, ..., » — m, are the desired cigenvalues
in the sliding mode. Let A, (/) and A, (/) denote the maximum
and minimum eigenvalues of J, respectively. By assumption A4,
there exist matrices W e R™>U) and N € R such that [4 +
BNIW = WI If SW =0, it can be seen that Range{ W) n Range(B)
= {0} because SB is mvertible. Hence [ B] is nonsingular. ##
and B? denote the generalised inverses of W and B, respectively.
Then select S = B¢ and a transformation matrix M such that y =
Mx where

we }

-y:Mo;:[;] and M:[S (2)

with M-l = [W B), z = Wex and ¢ = Sx. Using the fact WeAW =
J, the system of eqn. 1 in the new co-ordinates is

T=MAM ly+ MB(u+h)+ Mf

=Adoy + Ay +MB(u+h)+Mf (3)
where the matrices Ay and 4; are defined by
J 0
A= [0 1\m1‘11(J)[m] dnd
T o WIAB
A= [ SAW SAB - Am(J)IJ )

Before estimating the stability regions, the following resuli is
ghven:

Lemma: Select 0 < o< 1, 0< P < 1 and e > 0 such that the func-
tion gloe,B) = 40 - 4o, + B + € < O, Define O = Xt — 1)4,. Then
the following matrix is positive definite:

_ )\min((‘j) —h —42
Q= —i _Qa)‘mam(‘j) 0 (5)
—2 0 _2ahmm(J)

where Gt = ﬁlmax(‘]) and g2 = ’\I(Lg (G‘s [S))'mx'n(‘nknux("r))'

Pmoj'of lemima: Since }“mm( Q) = kz(l - U«)}ﬂmx(‘}) >0 and &l ﬂ) <
¢, we have
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Amin (Q] —f
dEt —{ '2a/\ma,a:(f)

Because det(Q) = 200402 ~ 4ot + B — g(0tBA% D in ) > 0,
it is obvious that the matrix @ is positive definite.
Now, the bounded controf input is defined by

= —ka/|li| (6)

Note that this control input is bounded which satisfies assumption
A3. Now, choose & Lyapunov function candidate V = Ty and

define a mateix
G = [ 0 WHAB]

> At () >0

SAW  SAB/2

Since MM = I,, we have that the matrix 4, defined in eqn. 4
can be rewritten by

A ]+[0 GMB) + [0

_ 0 0
1=1sM1¢ 0 —Amin(Nn

Then along any trajectory y of eqn. 3, it follows from eqns. 4 and
6 that

V =~y Qy + 200" Aoy + 27 Ary
+ 2T MBu+h) + 2 M f
= —yTQy + 2027 Tz 4 2aAmin{Nyo Lo
+20TS M Qy+2yT GM Bo = 2hmin(NoTSM ™1y
+20T(h — ka/llo|) + 2" M f &)

Use the lemma and egn. 7, the following theoren is proposed:

Theorem: Let

1. n = hafS
= {1 < TR+ TllF T+ B - qz(l)

B S ¥ 1 I

where g - &, |S) > G, f{ﬁMn N + ¢ > 0 and H =
SM"G+(GMB)TR?~,,,,-,,(J)SM Then any tra.Jectory starting in
will converge to I” and stay in I thereafter. That is, the region (2,
is an estimation of PSR with respect to I,

Proof of theorent,
(@) liz|l # 0 and {lo)| # 0: From the fact that x = M'y = Wz + Bg,
VM = 2THE + 7S, 7Oy 2 Ml O, 272 S Rl and
using eqn, 7 and assumptions Al and A2, we have
V < 7Oy + 2027 Tz 4 20hmanl N0 o + 2k (2]

+ 2ol (—k + k) -+ 2oyl {ISM TG + (GM B)T

= Amin(JYSM U} + 2k MNP (2wl

+ 2k | MBIl -+ 2k W2 02| + 2k ]ISl ol

< = in @M + 20 mac (2] + 26nin (T rif?

+2{[|SM7G + (GCMB)" ~ Amin{J)SM 1|

+ knlM T+ b | MBI el

+ 2k MW 2 iyl

+ 2k, |Wel|2Y + 2(-p + kufiS Dl (10)
i) ol 7, we

Since [z < {iy}, using the lemma and letting § =
have
V< ~g7 Q-+ 2{ ke MM H — qulllell + AW gl
+2(=p + kSIDNo) + 2{))SM 1 E
+{(GM B — Apin(N)SM T + T M)
+ kMBI - a2 Hlalllivh (i1)

Hence any trajectories starting in €, will converge to I" and can-
not escape I through region Qp N {(z,6} : (2] 2 0, [l = 0}.

(4) {ioll = 0 and |iz| # 0; In this case, the purpose i3 to prove that
any tra]ectory starting in G, M {(z,0) : jlojf = 0} will converge to
I"and stay in [ thereafter, From eqn. 11, it can be seen that ¥ <

P05 + Al MY~ qllzl + &, [WE IR < 2(Ck 1M
[l WH ql)HZH + &, {WE ([} | vl Hence, any trajectory starting in QO
™ {(z,0) : (o]l = 0} will converge to I" and stay in [ thereafter.

(e} lz]| = 0 and }jo]| = 0: In this case, ¥ = ljo]l. Tt follows eqn. 10
and the lemma that ¥ <-pT0 p + 2{~tk, IS Vol + 2 {) SM-
IGHGMBYT <A, (DSMl+k, 1M + kM) 1B - qlllo)®
Hence V¥ < 0 if the trajectory stariing in (3. This ensures that
any trajectory in the region £, ™ {(z.0): 2] = 0} will asympioti-
cally approach |ig|| = 0. Hence the theorem is proved.,

Remarle: For the sysiem with only matched uncertainty, ie. k= k,
= 0, the region €, is an estimation of ASR,

Corollary: If k, = 0 and 0 £ ky < /(| 8)] ||]).then € is an esti-
mation of ESR.

Proof of corellary: Suppose that the system trajectory is in the
region Q. Using eqn. 11, we have ¥ < -, (O WP Since V=
IR, we obtain [p(D7 < [DAOR exp(-h, (O ). Hence the corol-
laty is proved.

Example: Consider a system described by eqn. | with

-1 4 -1 0
A=10 -1 1 and B= 10
3 2 -1 1

Suppose that {ul] < & = 20, (A< 0.20x( and W) € G.34xN.
If matrix J is chosen to be J = diag{~-1,-2}, the sfiding function
can be designed using & = Sx = [0 1 1}x. We choose o = 0.5 and f
= 0.715 such that g, = 0.715 and ¢, = 0.988. We then sce that the
conditions of the coroflary hold. Hence from ihe theorem and cor-
ollary, we have an estimated ESR Qg5 = {¥ : 0] < 6.370}.
Now, using the method of Hui and Zak [1], the estimation of
ASR is given by T = {(z,6) : |lg}| < 1.3, 4239 |lz}| + 1.583 jlo|| <
200, Also, using theorem 2 and remark 6 from Glazos and Zak
{2}, the ASR is given by &' = {{z,0) : 3.761 ))z|| -+ 3.159 jloi| < 20}.

7 4 T —

tesll

.;
&l I N ——
= -0 1

1

)

Iz
Fig. 1 Estimation of stubility regions
~—Z
—Z
—— Q84

The stability regions Z, Z’ and €943 are shown in Fig. t. The
new tesult can lead to an improvement in the estimation of sta-
bility rvegions. Tt shovid be noted that for region X, by using the
Hui and Zak (1] method and region X’ using the Glazos and Zak
[2] method, only estimations of the ASR are obtained. Region
Coogg using our method is larger than ¥ and £’ Furthermore,
€985 18 an estimation of ESR.
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Editor’s correction

The expression G; (D) = g, D+ ...+ g, D"

which ocours in the sentence after eqn. 1, shoulkd read:

G =g otgnD+...tgm D"

MONTEZUMA, P., and cusmio, A ‘Design of TC-OQAM schemes
using a generalised nonlinear OQPSK-type format’, Elecrron.
o Letr., 35, (11), pp. 860-861

Editor's correction

The expression for the modulation pulse after eqn. 6 should read:

r;(6) = jr (tyexplj (my/2T)]

CHURIN, EG., and Bavyver, . ‘Passband flattening and broadening
techniques for high spectral efficiency wavelength denultiplexers’
Electron. Leit., 35, (1), pp, 27-28

Author’s correction

The authors are grateful to A. Hill (BT Laboratories, Tpswich) for
pointing out the inaccuracy in Figs. 1 and 2 of owr Letter. The
second (output) demultiplexer in these Figures should be rotated
about the horizontal axis, as shown below. This inaccuracy does
nat affect the reported results,

autput fibres —j

input fibre

Fig. 1 Schematic diagram of device with two identical demuitiplexers
and microlens array

fnput fibre

output fibres

0.5 0 0.5
rolative position

LI

multiorder
grating

]

Fig, 2 Schematic diagram of device with multiorder diffractive element,
demultiplexer, and iris

Inset: Intensity profiles in iris plane for three wavelength channels
within signhal window

1390 ELECTRONICS LETTERS 5th August 1999 Voi, 35 No. 16

Authorized licensed use limited to: Chin-Yi University of Technology. Downloaded on November 3, 2008 at 06:09 from IEEE Xplore. Restrictions apply.



